Back
Data Science Roadmap - Advanced
Follow this step-by-step roadmap to master
data_science
at Advanced level
1
Advanced Machine Learning
4 weeks
▹
Ensemble Methods (Bagging, Boosting, Random Forest, XGBoost)
▹
Feature Importance
▹
Dimensionality Reduction (PCA, t-SNE)
▹
Hyperparameter Tuning (GridSearch, RandomSearch)
▹
Mini-Project: Predicting House Prices
2
Deep Learning
5 weeks
▹
Neural Networks Basics
▹
TensorFlow & Keras
▹
CNNs (Image Classification)
▹
RNNs & LSTMs (Sequence Data)
▹
Transfer Learning
▹
Mini-Project: Image Classifier with CNN
3
Natural Language Processing (NLP)
4 weeks
▹
Text Preprocessing (Tokenization, Stopwords, Lemmatization)
▹
Bag of Words & TF-IDF
▹
Word Embeddings (Word2Vec, GloVe, BERT)
▹
Sentiment Analysis
▹
Text Classification
▹
Mini-Project: Twitter Sentiment Analysis
4
Big Data & Cloud
4 weeks
▹
Big Data Concepts
▹
Hadoop & Spark Basics
▹
Data Pipelines (Airflow, Kafka)
▹
Cloud Platforms (AWS, GCP, Azure)
▹
Mini-Project: Spark Data Analysis
5
Deployment & MLOps
3 weeks
▹
Model Serialization (Pickle, Joblib)
▹
Flask/FastAPI for Model Deployment
▹
Dockerizing ML Models
▹
CI/CD for ML
▹
Monitoring & Retraining
▹
Mini-Project: ML Model Deployment on Cloud
GeekDost - Roadmaps & Snippets for Developers