Back

Data Science Roadmap - Intermediate

Follow this step-by-step roadmap to master data_science at Intermediate level

1

Data Wrangling & Preprocessing

3 weeks
  • Handling Missing Values
  • Data Transformation & Scaling
  • Feature Engineering
  • Feature Selection
  • Outlier Detection
  • Mini-Project: Customer Data Cleaning
2

Exploratory Data Analysis (EDA)

2 weeks
  • Univariate, Bivariate, Multivariate Analysis
  • Correlation & Heatmaps
  • Feature Distributions
  • Time Series EDA
  • Mini-Project: Sales Dataset EDA
3

Machine Learning Basics

4 weeks
  • Supervised vs Unsupervised Learning
  • Regression (Linear, Logistic)
  • Classification (KNN, Decision Trees)
  • Clustering (K-Means, Hierarchical)
  • Evaluation Metrics (Accuracy, Precision, Recall, F1, ROC)
  • Mini-Project: Iris Dataset Classifier
4

Data Visualization

2 weeks
  • Advanced Matplotlib & Seaborn
  • Plotly & Interactive Visualizations
  • Dashboards with PowerBI / Tableau
  • Mini-Project: Interactive COVID Dashboard
GeekDost - Roadmaps & Snippets for Developers