Back
Machine Learning Roadmap - Advanced
Follow this step-by-step roadmap to master
machineLearning
at Advanced level
1
Neural Networks & Deep Learning
4 weeks
▹
Perceptron & Multilayer Perceptron
▹
Activation Functions (ReLU, Sigmoid, Tanh, Softmax)
▹
Forward & Backpropagation
▹
Gradient Descent Variants (SGD, Adam, RMSProp)
▹
Mini-Project: Handwritten Digit Classifier (MNIST)
2
Convolutional Neural Networks (CNNs)
4 weeks
▹
Convolution & Pooling Layers
▹
CNN Architectures (LeNet, AlexNet, ResNet, VGG)
▹
Transfer Learning
▹
Data Augmentation
▹
Mini-Project: Image Classification (CIFAR-10)
3
Recurrent Neural Networks (RNNs)
3 weeks
▹
RNN Basics
▹
Vanishing Gradient Problem
▹
LSTM & GRU Networks
▹
Sequence-to-Sequence Models
▹
Mini-Project: Text Generation with LSTMs
4
Natural Language Processing (NLP)
4 weeks
▹
Text Preprocessing (Tokenization, Lemmatization, Stopwords)
▹
Word Embeddings (Word2Vec, GloVe, FastText)
▹
Transformers (Attention Mechanism, BERT, GPT basics)
▹
Mini-Project: Sentiment Analysis
5
Reinforcement Learning
4 weeks
▹
Markov Decision Processes
▹
Q-Learning
▹
Deep Q Networks (DQN)
▹
Policy Gradient Methods
▹
Mini-Project: Game AI with RL
6
Production & Deployment
3 weeks
▹
Saving & Loading Models
▹
Flask/FastAPI for ML Deployment
▹
Dockerizing ML Models
▹
ML in Cloud (AWS, GCP, Azure)
▹
MLOps Basics (CI/CD for ML, Monitoring Models)
▹
Mini-Project: Deploy ML Model as API
GeekDost - Roadmaps & Snippets for Developers