Back
Machine Learning Roadmap - Beginner
Follow this step-by-step roadmap to master
machineLearning
at Beginner level
1
Mathematics Foundations
3 weeks
▹
Linear Algebra (Vectors, Matrices, Operations)
▹
Calculus Basics (Derivatives, Gradients, Partial Derivatives)
▹
Probability & Statistics Basics
▹
Distributions (Normal, Binomial, Poisson)
▹
Bayes’ Theorem
2
Python for ML
2 weeks
▹
NumPy Basics
▹
Pandas for Data Handling
▹
Matplotlib & Seaborn for Visualization
▹
Jupyter Notebook Workflow
▹
Mini-Project: Data Cleaning & Visualization
3
Introduction to ML
2 weeks
▹
What is Machine Learning?
▹
Types of ML (Supervised, Unsupervised, Reinforcement)
▹
ML Workflow (Data → Model → Evaluate → Deploy)
▹
Overfitting vs Underfitting
▹
Bias-Variance Tradeoff
4
Data Preprocessing
2 weeks
▹
Handling Missing Values
▹
Encoding Categorical Variables
▹
Feature Scaling (Normalization & Standardization)
▹
Train-Test Split
▹
Mini-Project: Titanic Survival Prediction (Data Preprocessing)
GeekDost - Roadmaps & Snippets for Developers