Back

Machine Learning Roadmap - Beginner

Follow this step-by-step roadmap to master machineLearning at Beginner level

1

Mathematics Foundations

3 weeks
  • Linear Algebra (Vectors, Matrices, Operations)
  • Calculus Basics (Derivatives, Gradients, Partial Derivatives)
  • Probability & Statistics Basics
  • Distributions (Normal, Binomial, Poisson)
  • Bayes’ Theorem
2

Python for ML

2 weeks
  • NumPy Basics
  • Pandas for Data Handling
  • Matplotlib & Seaborn for Visualization
  • Jupyter Notebook Workflow
  • Mini-Project: Data Cleaning & Visualization
3

Introduction to ML

2 weeks
  • What is Machine Learning?
  • Types of ML (Supervised, Unsupervised, Reinforcement)
  • ML Workflow (Data → Model → Evaluate → Deploy)
  • Overfitting vs Underfitting
  • Bias-Variance Tradeoff
4

Data Preprocessing

2 weeks
  • Handling Missing Values
  • Encoding Categorical Variables
  • Feature Scaling (Normalization & Standardization)
  • Train-Test Split
  • Mini-Project: Titanic Survival Prediction (Data Preprocessing)
GeekDost - Roadmaps & Snippets for Developers