Back
Machine Learning Roadmap - Intermediate
Follow this step-by-step roadmap to master
machineLearning
at Intermediate level
1
Supervised Learning
4 weeks
▹
Linear Regression
▹
Logistic Regression
▹
Decision Trees
▹
Random Forests
▹
Support Vector Machines (SVM)
▹
K-Nearest Neighbors (KNN)
▹
Mini-Project: House Price Prediction
2
Unsupervised Learning
3 weeks
▹
Clustering (K-Means, Hierarchical, DBSCAN)
▹
Dimensionality Reduction (PCA, t-SNE)
▹
Association Rule Mining (Apriori, FP-Growth)
▹
Mini-Project: Customer Segmentation
3
Model Evaluation & Validation
3 weeks
▹
Cross Validation
▹
Confusion Matrix
▹
Precision, Recall, F1-Score
▹
ROC Curve & AUC
▹
Hyperparameter Tuning (Grid Search, Random Search)
▹
Mini-Project: Credit Card Fraud Detection
4
Feature Engineering
2 weeks
▹
Feature Selection Techniques
▹
Polynomial Features
▹
Feature Importance
▹
Dimensionality Reduction for Features
▹
Mini-Project: Spam Email Classifier
GeekDost - Roadmaps & Snippets for Developers