Back
Python Roadmap - Advanced
Follow this step-by-step roadmap to master
python
at Advanced level
1
Advanced OOP
3 weeks
▹
Class vs Static Methods (deep dive)
▹
Decorators & Function Wrapping
▹
Property Decorators (Getters, Setters, Deleters)
▹
Iterators (iter, next, custom classes)
▹
Generators & yield
▹
Context Managers (with __enter__, __exit__)
▹
Metaclasses (type, customizing class creation)
2
Functional Programming
2 weeks
▹
Map, Filter, Reduce
▹
Closures & Nested Functions
▹
Higher-Order Functions
▹
Functools Module (lru_cache, partial)
▹
itertools Module (cycle, permutations, combinations)
3
Concurrency & Parallelism
3 weeks
▹
Multithreading (threading module)
▹
Multiprocessing (process pools)
▹
AsyncIO (async, await, event loops)
▹
Concurrent Futures
▹
ThreadPoolExecutor & ProcessPoolExecutor
▹
When to Use Threads vs Processes
4
Database & Persistence
2 weeks
▹
SQLite with Python (sqlite3 module)
▹
MySQL/PostgreSQL Connector
▹
ORM with SQLAlchemy
▹
NoSQL with MongoDB (pymongo)
▹
Basic CRUD Operations
▹
Mini-Project: To-do App with Database
5
Web Development
4 weeks
▹
Flask Basics (setup, routes, templates)
▹
Flask Forms & Jinja Templates
▹
Django Framework Basics (MVT structure)
▹
Django Models & ORM
▹
Django Authentication System
▹
FastAPI Basics (async APIs)
▹
Building REST APIs with Flask & FastAPI
6
Testing & Deployment
3 weeks
▹
Unit Testing with unittest
▹
PyTest Framework (fixtures, asserts)
▹
Logging & Debugging
▹
Packaging Projects (setup.py, pyproject.toml)
▹
Virtual Environments Best Practices
▹
Docker Basics (images, containers)
▹
CI/CD Pipelines (GitHub Actions, Jenkins basics)
7
Data Science & AI (Optional Advanced Track)
6-8 weeks
▹
Exploratory Data Analysis with Pandas
▹
Data Visualization with Matplotlib & Seaborn
▹
Machine Learning with Scikit-Learn
▹
Deep Learning with TensorFlow/Keras
▹
Natural Language Processing with NLTK & SpaCy
▹
Mini-Project: ML Model Deployment
GeekDost - Roadmaps & Snippets for Developers